## MATHEMATICAL FOUNDATIONS OF DATA ANALYSIS <br> UNIT V <br> SINGULAR VALUE DE COMPOSITION OF A MATRIX

## Definition: Singular Value Decomposition of a matrix:

A Singular Value Decomposition (SVD) of an $m \times n$ matrix $A$ of rank $r$ is a factorization $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$ where $\mathbf{U}$ and $\mathbf{V}$ are orthogonal and $\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{D} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \mathrm{m} \times \mathrm{n}$ in block form where $\mathbf{D}=\boldsymbol{\operatorname { d i a g }}\left(\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{\mathbf{r}}\right)$ where each $\mathrm{d}_{\mathrm{i}}>0$, and $\mathrm{r} \leq \mathrm{m}$ and $\mathrm{r} \leq \mathrm{n}$.

Note1: If $A=U \Sigma V^{T}$ is any $S V D$ for $A$ as then:

1. $\mathrm{r}=\operatorname{rank} \mathrm{A}$.
2. The numbers $d_{1}, d_{2}, \ldots, d_{r}$ are the singular values of $A^{T} A$ in some order.

## Note 2 :

Let $A$ be a real $m \times n$ matrix. Then:

1. The eigen values of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ and $\mathrm{AA}^{\mathrm{T}}$ are real and non-negative.
2. $A^{T} A$ and $A A^{T}$ have the same set of positive eigen values.

Definition: Singular values of the matrix A
Let A be a real $\mathrm{m} \times \mathrm{n}$ matrix. Let $\boldsymbol{\lambda}$ be an eigenvalue of $\mathrm{A}^{\top} \mathrm{A}$, with non zero eigenvectors $q_{i} \in R^{n}$. Then the real numbers $\sigma_{i}=\sqrt{\lambda_{i}}=\left\|A \boldsymbol{q}_{i}\right\|$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$, are called the singular values of the matrix $A$.

## Definition: Singular matrix of A

Let $A$ be a real, $m \times n$ matrix of rank $r$, with positive singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and $\sigma_{i}=0$ if $i>$ r. Define: $\boldsymbol{D}_{\mathrm{A}}=\operatorname{diag}\left(\boldsymbol{\sigma}_{1}, \boldsymbol{\sigma}_{2} \ldots, \boldsymbol{\sigma}_{\mathrm{r}}\right)$ and $\Sigma_{\mathrm{A}}=\left[\begin{array}{cc}D_{A} & 0 \\ 0 & 0\end{array}\right]_{m \times n}$ Here $\Sigma_{\mathrm{A}}$ is in block form and is called the Singular matrix of $A$.

Definition: Two subspaces associated with a matrix A having m rows and n columns.
$\operatorname{im} \mathrm{A}=\left\{\mathrm{Ax} \mid x \in R^{n}\right\}$ and $\operatorname{col} \mathrm{A}=\operatorname{span}\{\mathrm{a} \mid \mathrm{a}$ is a column of A$\}$.
Then im $\mathbf{A}$ is called the image of $A$ (so named because of the linear transformation $R^{n} \rightarrow R^{m}$ with $x \rightarrow$ Ax); and col A is called the column space of A.

Note: $\operatorname{im} \mathrm{A}=\operatorname{col} \mathrm{A}$.
Definition: Singular Value Decomposition (SVD) of A

Definition: Let $A$ be a real $m \times n$ matrix, and let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ be the positive singular values of A. Then $\boldsymbol{r}$ is the rank of $\mathbf{A}$ and we have the factorization $\mathbf{A}=\mathbf{P} \boldsymbol{\Sigma}_{\boldsymbol{A}} \mathbf{Q}^{\boldsymbol{T}}$ where $\mathbf{P}$ and $\mathbf{Q}$ are orthogonal matrices. The factorization $\mathbf{A}=\mathbf{P} \boldsymbol{\Sigma}_{\mathbf{A}} \mathbf{Q}^{\boldsymbol{\top}}$, where $\mathbf{P}$ and $\mathbf{Q}$ are orthogonal matrices, is called a Singular Value Decomposition (SVD) of $A$. This decomposition is not unique.

## Reference:

https://math.emory.edu/~Ichen41/teaching/2020_Fall/Section_8-6.pdf

## Procedure for finding Singular Value Decomposition (SVD) of the given matrix $A$

## Solution:

Step 1: To find $A^{T} A$
Step 2: To find Eigen values (Characteristic values) of $A^{T} A$.

$$
\text { Use }\left|A^{T} A-\lambda I\right|=0
$$

Step 3: To find Eigen vectors (Characteristic vectors) Eigen vectors of $A^{T} A$, corresponding unit Eigen vectors $q_{1}, q_{2}$ and $q_{3}$.

Use the Characteristic equations formula $\left(A^{T} A-\lambda I\right) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
Step 4: To find orthogonal matrix $Q=\left(\begin{array}{lll}q_{1} & q_{2} & q_{3}\end{array}\right)$
Step 5: To find Singular values of $A^{T} A$.
Use the formula $\sigma_{i}=\sqrt{\lambda_{i}} \quad \mathrm{i}=1,23 . \sigma_{i}$ is called the Singular value of the matrix $A^{T} A$
Step 6: To find rank of the given matrix A
Step 7: To find singular matrix of A denoted by $\sum_{A}$

$$
\sum_{A}=\left(\begin{array}{cc}
\mathrm{D}_{\mathrm{A}} & 0 \\
0 & 0
\end{array}\right) \text { Where } \mathrm{D}_{\mathrm{A}}=\operatorname{diag}\left(\begin{array}{llll}
\sigma_{1} & \sigma_{2} & \sigma_{3} & \ldots
\end{array}\right)
$$

Step 8: To find $2 \times 2$ Orthogonal matrix $P=\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)$ where $p_{1}$ and $p_{2}$ are normalisers of $A q_{1}$ and $A q_{2}$ respectively.

Step 9: Singular Value Decomposition (SVD) f or A is obtained by using the formula

$$
A=P \sum_{A} Q^{T}
$$

## Problem:

Find Singular Value Decomposition (SVD) for the matrix $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right)$

## Solution:

Let the given matrix be $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0\end{array}\right)$
Step 1: To find $A^{T} A$

$$
A^{T} A=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Step 2: To find Eigen values (Characteristic values ) of $A^{T} A$

$$
\begin{aligned}
& \left|A^{T} A-\lambda I\right|=\mathbf{0} \\
\Rightarrow & \left|\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right|=\mathbf{0} \\
\Rightarrow & \left|\left(\begin{array}{ccc}
2-\lambda & -1 & 1 \\
-1 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right)\right|=\mathbf{0} \\
\Rightarrow & (2-\lambda)(1-\lambda)(1-\lambda)-(1-\lambda)-(1-\lambda)=\mathbf{0} \\
\Rightarrow & (1-\lambda)[(2-\lambda)(1-\lambda)-\mathbf{1}-\mathbf{1}]=\mathbf{0} \\
\Rightarrow & (1-\lambda)\left[\lambda^{2}-\mathbf{3} \lambda+2-2\right]=\mathbf{0} \\
\Rightarrow & (1-\lambda)\left[\lambda^{2}-\mathbf{3} \lambda\right]=\mathbf{0} \\
\Rightarrow & (1-\lambda)(\lambda-3) \lambda=\mathbf{0} \\
\Rightarrow & \lambda=3, \lambda=1 \text { and } \lambda=0
\end{aligned}
$$

Let $\lambda_{1}=3 \quad \lambda_{2}=1$ and $\lambda_{3}=0$
Step 3: To find Eigen vectors (Characteristic vectors) Eigen vectors of $A^{T} A$, corresponding unit Eigen vectors $q_{1}, q_{2}$ and $q_{3}$.

Characteristic equations is $\left(A^{T} A-\lambda I\right) X=0$ where $X=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
$\Rightarrow\left(A^{T} A-\lambda I\right) X=0$

$$
\begin{aligned}
\Rightarrow & \left(\begin{array}{ccc}
2-\lambda & -1 & 1 \\
-1 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& (2-\lambda) x_{1}-x_{2}+x_{3}=0
\end{aligned}
$$

$$
\begin{array}{r}
-x_{1}+(1-\lambda) x_{2}+0 x_{3}=0 \\
x_{1}+0 x_{2}+(1-\lambda) x_{3}=0
\end{array}
$$

Put $\boldsymbol{\lambda}=\mathbf{3}$ in the above first two equations we get

$$
\begin{aligned}
& -x_{1}-x_{2}+x_{3}=0 \\
& -x_{1}-2 x_{2}+0 x_{3}=0 \\
& \quad \frac{x_{1}}{0+2}=\frac{x_{2}}{-1-0}=\frac{x_{3}}{0-1} \\
& \Rightarrow \frac{x_{1}}{2}=\frac{x_{2}}{-1}=\frac{x_{3}}{-1}
\end{aligned}
$$

| $x_{2}$ | $x_{3}$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| -1 | 1 | -1 | -1 |
| -2 | 0 | -1 | 0 |

Therefore Eigen vector corresponding to the Eigen value $\lambda=3$ is $\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
Let $q_{1}$ be the unit Eigen vector corresponding to the Eigen value $\lambda=3$.
$\mathrm{q}_{1}=\left(\begin{array}{c}\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}}\end{array}\right)=\frac{1}{\sqrt{6}}\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ the length of this vector is $\sqrt{2^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{6}$
Next Put $\boldsymbol{\lambda}=\mathbf{1}$ in the above first two equations we get

$$
\begin{aligned}
& 1 x_{1}-x_{2}+x_{3}=0 \\
& -x_{1}+0 x_{2}+0 x_{3}=0 \\
& \frac{x_{1}}{0+0}=\frac{x_{2}}{-1-0}=\frac{x_{3}}{0-1} \\
& \Rightarrow \frac{x_{1}}{0}=\frac{x_{2}}{-1}=\frac{x_{3}}{-1} \Rightarrow \frac{x_{1}}{0}=\frac{x_{2}}{1}=\frac{x_{3}}{1}
\end{aligned}
$$

| $x_{2}$ | $x_{3}$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| -1 | 1 | 1 | -1 |
| 0 | 0 | -1 | 0 |

Therefore Eigen vector corresponding to the Eigen value $\lambda=1$ is $\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
Let $q_{2}$ be the unit Eigen vector corresponding to the Eigen value $\lambda=1$.
Therefore $\boldsymbol{q}_{2}=\left(\begin{array}{c}\mathbf{0} \\ \frac{\mathbf{1}}{\sqrt{2}} \\ \frac{\mathbf{1}}{\sqrt{2}}\end{array}\right)=\frac{\mathbf{1}}{\sqrt{2}}\left(\begin{array}{l}\mathbf{0} \\ \mathbf{1} \\ \mathbf{1}\end{array}\right)$ the length of this vector is $\sqrt{0^{2}+(1)^{2}+(1)^{2}}=\sqrt{2}$
Next Put $\boldsymbol{\lambda}=\mathbf{0}$ in the above first two equations we get

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=0 \\
& -x_{1}+1 x_{2}+0 x_{3}=0
\end{aligned}
$$

| $x_{2}$ | $x_{3}$ | $x_{1}$ | $x_{2}$ |
| :---: | :---: | :---: | :---: |
| -1 | 1 | 2 | -1 |
| 1 | 0 | -1 | 1 |

$$
\begin{aligned}
& \frac{x_{1}}{0-1}=\frac{x_{2}}{-1-0}=\frac{x_{3}}{2-1} \\
& \Rightarrow \frac{x_{1}}{-1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1}
\end{aligned}
$$

Therefore Eigen vector corresponding to the Eigen value $\lambda=0$ is $\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$
Let $q_{3}$ be the unit Eigen vector corresponding to the Eigen value $\lambda=0$.
Therefore $\boldsymbol{q}_{\mathbf{3}}=\left(\begin{array}{c}\frac{-\mathbf{1}}{\sqrt{3}} \\ \frac{-\mathbf{1}}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right)$ the length of this vector is $\sqrt{(-1)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{3}$
Step 4: To find orthogonal matrix $Q=\left(\begin{array}{lll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \boldsymbol{q}_{3}\end{array}\right)$
The orthogonal matrix $Q$ is

$$
Q=\left[\begin{array}{lll}
q_{1} & q_{2} & q_{3}
\end{array}\right]=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{-1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}}
\end{array}\right)
$$

By taking $\frac{1}{\sqrt{6}}$ outside we get $Q=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}2 & 0 & -\sqrt{2} \\ -1 & \sqrt{3} & -\sqrt{2} \\ 1 & \sqrt{3} & \sqrt{2}\end{array}\right)$

## Step 5: To find Singular values of $A^{T} A$.

Use the formula $\sigma_{i}=\sqrt{\lambda_{i}} \quad \mathrm{i}=1,23 . \sigma_{i}$ is called the Singular value of the matrix $A^{T} A$.
$\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{3} \quad \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{1}=1 \quad \sigma_{3}=\sqrt{\lambda_{3}}=\sqrt{0}=0$

## Step 6: To find rank of the given matrix $A$

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right) . \text { Here order of } \mathrm{A} \text { is } 2 \times 3 \text {. Therefore Rank of } \mathrm{A}, \rho(A) \leq 2
$$

Now, $\left|\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right|=1 \neq 0$. Therefore $\rho(A)=2$.
Step 7: To find singular matrix of $A$ denoted by $\sum_{A}$

$$
\Sigma_{A}=\left(\begin{array}{cc}
\mathrm{D}_{\mathrm{A}} & 0 \\
0 & 0
\end{array}\right) \text { Where } \mathrm{D}_{\mathrm{A}}=\operatorname{diag}\left(\begin{array}{lll}
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}\right)=\operatorname{diag}\left(\begin{array}{lll}
\sqrt{3} & 1 & 0
\end{array}\right)
$$

Since the Rank of A is 2 , we consider only two singular values $\sigma_{1}$ and $\sigma_{2}$. Therefore Singular matrix of A is

$$
\Sigma_{A}=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{\mathbf{3}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0}
\end{array}\right)
$$

Step 8: To find $2 \times 2$ Orthogonal matrix $P=\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)$ where $p_{1}$ and $p_{2}$ are normalisers of $A q_{1}$ and $A q_{2}$ respectively.

$$
\begin{aligned}
& \text { Now } \boldsymbol{A} \boldsymbol{q}_{1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}}
\end{array}\right)=\binom{\frac{3}{\sqrt{6}}}{-\frac{3}{\sqrt{6}}}=\frac{3}{\sqrt{6}}\binom{1}{-1} \\
& \boldsymbol{p}_{1}=\text { Normaliser of } A q_{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \\
& \text { Now } \boldsymbol{A} \boldsymbol{q}_{2}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
\mathbf{0} \\
1 \\
1
\end{array}\right)=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& \qquad \boldsymbol{p}_{2}=\text { Normaliser of } A q_{2}=\frac{1}{\sqrt{2}}\binom{1}{1}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
\end{aligned}
$$

Therefore Orthogonal matrix

$$
P=\left(\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

Step 9: Singular Value Decomposition (SVD) for A is obtained by using the formula

$$
\begin{aligned}
A=P \sum_{A} Q^{T}= & \frac{\mathbf{1}}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{1} & \mathbf{1} \\
\mathbf{- 1} & \mathbf{1}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{3} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0}
\end{array}\right) \frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
2 & 0 & -\sqrt{2} \\
-1 & \sqrt{3} & -\sqrt{2} \\
1 & \sqrt{3} & \sqrt{2}
\end{array}\right)^{T} \\
& =\frac{\mathbf{1}}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{1} & \mathbf{1} \\
-\mathbf{1} & \mathbf{1}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{3} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{1} & \mathbf{0}
\end{array}\right) \frac{\mathbf{1}}{\sqrt{6}}\left(\begin{array}{ccc}
\mathbf{2} & -\mathbf{1} & \mathbf{1} \\
\mathbf{0} & \sqrt{3} & \sqrt{3} \\
-\sqrt{2} & -\sqrt{2} & \sqrt{2}
\end{array}\right)
\end{aligned}
$$

